ENGINEERING (ENGR)

Through a Western-University of Colorado (CU) Boulder partnership program, you can graduate with a B.S. degree from UC Boulder’s renowned College of Engineering & Applied Science (CEAS). During the first two years of the partnership program, you take Western courses with Western faculty. For the final two years, you take CU Boulder classes with CU Boulder faculty—remaining at Western the entire four years to complete a B.S. in Mechanical Engineering from the CU Boulder.

Students can learn more about the Western-CU Partnership Honors Program Certificate HERE (https://catalog.western.edu/undergraduate/programs/certificates/honors-certificate-partnership/).

- Mechanical Engineering, Western - University of Colorado Boulder Partnership (https://catalog.western.edu/undergraduate/programs/engineering/mechanical-engineering/) 

ENGR 131. Introduction to Engineering Design. (3 Credits)
An interactive course to introduce students to the elements of engineering design. Learning objectives include a hands-on design experience, building teamwork and communication skills, understanding engineering methodology and engineering ethics. The goal for the semester is an open-ended design problem that students must solve as part of a team effort. This provides the practice that students need to become more skilled in the process of technical design as it is practiced in the workplace. Intro to design aims to build students' confidence in applying fundamental problem-solving concepts in order to solve complex, open-ended problems. Prerequisite or corequisite: MATH 141

ENGR 161. Computer-Aided Design. (3 Credits)
Introduces CAD software and relevant concepts, including orthographic projection, sections, engineering drawing, geometric dimensioning and tolerancing, and an introduction to manufacturing methods. Prerequisite: MATH 151

ENGR 197. Special Topics. (1-6 Credits)
FABRICATION: This course is designed to provide students with the application of machine speeds, machine feeds, materials, tooling, tapping, and boring, in the manufacturing processes. Prerequisites: Restricted to Mechanical Engineering majors.

ENGR 224. Materials Science. (3 Credits)
Provides an overview of the structure, properties and processing of metallic, polymeric and ceramic materials. Specific topics include perfect and imperfect solids, phase equilibria, transformation kinetics, mechanical behavior and material degradation. Approach incorporates both materials science and materials engineering components. Prerequisites: CHEM 121 or CHEM 111, 112, 113 and 114, and PHYS 200 (all require minimum grade of C or higher).

ENGR 265. Engineering as a Profession. (1 Credit)
An introduction to the profession of mechanical engineering. Specific topics addressed through the semester include career opportunities in mechanical engineering, internship search skills, resume writing skills, expectations for professional behavior in the classroom and in industry, and current events/ethics topics relevant to the field. The class format may include additional evening/weekend activities. Prerequisite: ENGR 131 or instructor permission

ENGR 297. Special Topics. (1-6 Credits)
Provides an overview of the structure, properties and processing of metallic, polymeric and ceramic materials. Specific topics include perfect and imperfect solids, phase equilibria, transformation kinetics, mechanical behavior and material degradation. Approach incorporates both materials science and materials engineering components. Prerequisites: Requires prereq course of CHEM 121 or CHEM 111, 112, 113 and 114, and PHYS 200 (min grade C).

ENGR 363. Mechanics of Solids. (3 Credits)
Covers shear force and bending moment, torsion, stresses in beams, deflection of beams, matrix analysis of frame structures, analysis of stress and strain in 2-D and 3-D (field equations, transformations), energy methods, stress concentrations and columns. Prerequisites: MATH 252 and PHYS 250 (all require minimum grade of C or higher).

ENGR 397. Independent Study. (1-6 Credits)
FLUID MECHANICS: Examines fundamentals of fluid flow with application to engineering problems. Topics covered include fluid statics and kinematics, Bernoulli equations, laminar and turbulent viscous boundary layers, laminar and turbulent pipe flow, and conservation equations for mass, momentum and energy. Prerequisites: Requires prereq of PHYS 250 or ENGR 250; MATH 358; PHYS 201. All require C or higher.